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1 Introduction

Herding within financial markets, the theory of investors abandoning private information and mimicking the

decisions of others, has received significant empirical attention given its theoretical ability to exacerbate market

volatility and facilitate asset bubbles (Avery & Zemsky, 1998). Existing research on the interaction between

government responses and herding has concluded that governments reduce multidimensional uncertainty by

providing investors with quality and timely information (Kizys et al., 2021; Sharif et al., 2020), which in

turn mitigates herding behaviour (Avery & Zemsky, 1998). However, ’lockdown-style’ policies have been

linked to increased cognitive stress (Dubey et al., 2020; Aknin et al., 2022) , which conversely is theorised to

increase herding behaviour (Prechter, 2010). Amongst a backdrop of increased focus on behavioural elements

in policy-making decisions (ESMA, 2017), this paper utilises methodology proposed by Chang et al. (2000) to

investigate the effect of ’lockdown-style’ policy responses to COVID-19 in China on herding within Chinese

equity markets. We find that whilst stricter government responses to the pandemic can be linked to a decrease

in herding behaviour, this effect reverses under the strictest 5% of lockdowns, with herd behaviour increasing

during these periods. The paper is structured as follows: firstly in Section 2, we will explore the theoretical

mechanisms that cause herding and the empirical literature documenting the presence of herding in financial

markets. Finally, in Section 3, we will document this paper’s empirical methodology, subsequently discussing

our results in the context of the empirical landscape.

2 Theoretical and Empirical Review

2.1 Theory of Herding

Rational Models: Banerjee (1992) presents the foremost model for rational herding, arguing that in cases

such as financial markets, where economic agents cannot fully determine what information other agents possess

entirely through their actions, it is often rational for agents to disregard their private information and instead

follow those before them. The paper presents a sequential game, where a population of investors of size N

select an asset i to invest in from a non-finite set of assets, in order to maximise their monetary gain from

the investment. An unknown asset from this group, i∗, will result in the highest monetary payoff z(i) of

z(i∗) = z above that of all other assets i ̸= i∗. The private information an investor possesses in this game is a
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so-called ‘signal’ i′, which tells an investor which asset is the true highest-returning asset, i′ = i∗. Uncertainty

is introduced into the game, as investors receive such a signal with probability α , and if they do receive a

signal it is correct with probability β . For example, an investor receives a misleading signal of i′ ̸= i∗ with

probability α(1−β ). Under these rules, investors sequentially choose which asset to invest into, with the first

investor chosen at random. The next randomly chosen investor follows, with the knowledge of the actions of the

previous investors, but not knowledge of their signal. Subsequently, investors have a choice of whether to follow

their own signal, if they have one, or to follow the decisions of others and ‘herd’. This decision, under Bayesian

logic, depends on the probability under each choice of choosing the correct asset i∗. It is important to note that

the game has three foundational assumptions, with their purpose being to resolve tie-breaking circumstances

whilst minimizing the possibility of herding arising from the game’s construction - maintaining the model’s

external validity: Assumption A: Whenever a decision-maker has no signal and everyone else has chosen i = 0,

they always choose i = 0. Assumption B: When decision-makers are indifferent between following their own

signal and following someone else’s choice, they always follow their own signal. Assumption C: When a

decision-maker is indifferent between following more than one of the previous decision-makers, she chooses

to follow the one who has the highest value of i.

Working sequentially through the game, the first decision-maker will simply follow their own signal if

they have one, and if not will choose i = 0 as per Assumption A. The second decision-maker will follow the

prior investor if they do not have a signal. If they do, they are aware that both their own and the other investor’s

signal are equally as likely, with probability β , to be correct. Under Assumption B, they will follow their own

signal. The third decision-maker has multiple options. If they do not have a signal, they will follow the investor

that chooses the highest i (under Assumption C). If one or both prior investors choose i = 0, the decision-maker

will follow their own signal if they have one. If both investors choose i ̸= 0, but they choose different i, the

third investor will still follow their own signal. This is because they know that a single investor that chooses an

i ̸= 0 is just as likely to be correct as their own signal is. But what if both prior investors agree upon an i ̸= 0?

We can consider this final third investor’s decision-making process as an illustrative case for the kth

investor for the rest of the game. In this case, the two prior investors have chosen the same asset ī ̸= i∗, with

this event denoted by H. This can happen if the second investor does not have a signal and the first investor has

signal i′ = ī, or if both investors happen to have the same signal. Under this circumstance, the third investor

can choose to follow these prior investors, or choose their own signal if they have one. They will assess this
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choice based on the probability of the previous investors’ asset ī being the highest paying asset i∗,

P[i∗ = ī|H] =
α3β 2(1−β )+α2β (1−β )(1−α)

P[H]
,

against the probability that their own signal i′ = i∗,

P[i∗ = i′|H] =
α2β (1−β )(1−α)β

P[H]
.

Upon inspection, it is clear that P[i∗ = ī|H] > P[i∗ = i′|H], and investor three should choose to disregard

their private information and herd. It is important to note that investor three does not know whether the previous

investor has a signal, nor if any of the investors’ signals are correct. This is why the probability of these two

factors, α and β , enter into the decision making process. This logic can be extended: once an asset has

been chosen by two investors, the subsequent investors should always follow that decision, unless their signal

matches that of an asset that has already been chosen by one other investor - as these two assets have an equal

likelihood of being correct.

The Nash-Equilibrium of this game builds upon this case. Importantly, investors will always herd if any

option has been chosen by more than one person, with this asset being determined by early investors either via

a few uncertain private signals that happen to match, or through the combination of a single signal and a lack

of dissenting signals. Such a process is termed an ‘informational cascade’ as initial investor decisions can lead

to rapid formation of herds mimicking these decisions. Regardless of whether previous investors have material

information, in the form of a signal, or not, subsequent investors have no way of inferring such from their

actions. As such, when an asset attracts multiple investors subsequent decision-makers implicitly assume that

these investors possess information that they do not. When an investor abandons their own information and

follow others, this imposes a negative externality on sequential investors - depriving them of information that

their action would have provided if they had followed their signal. Importantly, as the probability of investors

herding to the incorrect asset is strictly positive, the result of the model is inefficient, even in the long run.

Welch (1992) extends the logic of Banerjee’s model of herding to explain herding by investors of initial

public offerings (IPOs). As in Banerjee, assuming an environment where investors can only observe previous

investor purchasing decisions, and not anyone else’s private information, later investors observe the purchasing

decisions of earlier investors, leading to aforementioned ‘informational cascades’ where investors optimally
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discard their private information and follow the decisions of others. Welch furthers this theory by considering

the seller reactions to such informational cascades. The seller, which within the context of an IPO is the

underwriter, faces reduced pricing pressure when an informational cascade is present. As such, issuers are

better off when investors cannot communicate, and are in fact incentivised to prevent such communication.

Avery & Zemsky (1998) (herein AZ) claims, however, that models such as Banerjee (1992) and Welch

(1992) that fix the price of taking an action ex ante are unsuitable for studying herding in the context of a

financial market, given these models neglect the behaviour change variable pricing and subsequent market-

clearing results in. AZ provide the antidote to this, developing a model for herding that possesses an adjustable

price mechanism. The paper concludes that in the presence of a single dimension of uncertainty, e.g. an

exogenous shock to an asset value, these adjustments prevent herd behaviour by eliminating the possibility of

informational cascades1. Importantly, however, in the presence of multiple dimensions of uncertainty, ie. when

there is uncertainty regarding an asset’s price relative to its initial value and the average accuracy of private

information, informational cascades become possible and, in some cases, even prevalent.

There also exists a wide range of literature detailing rational theories of herding that do not involve such

informational cascades, with investors possessing alternative motivations to follow others’ actions other than

the belief that they possess higher-quality information. Scharfstein & Stein (1990), for instance, proposed that

investment managers are incentivised to rationally herd in line with other managers in order to maintain their

reputation in the eyes of the labour market, mirroring the classic ’principle-agent problem’ in Economic theory.

The model consists of two investor types: ’smart’ investors, who receive signals based upon the profitability

of an investment, and ’dumb’ investors, who receive signals that consist purely of noise. The investor type is

unknown to both the investment manager and the labour market, and each investor type is equally likely to

receive a signal; therefore investor type cannot be inferred by the receipt of a signal. Therefore, one’s belief

regarding a manager’s type is updated based on their investment behaviour: either how profitable a decision

is, or whether this decision is in line with other managers’ decisions. This second performance indicator

is the critical mechanism resulting in herding - when unprofitable decisions are made, managers who act in

accordance with each other ‘share the blame’, lessening the blow to each individual manager than if they made

that decision alone. ’Smart’ managers tend to receive correlated signals, as they are observing facts about the

true value of an asset. As such, ’dumb’ managers can masquerade as smart if they follow others, likewise, they

1This assumes that a non-zero number of investors possess private information
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are more likely to be perceived as ’dumb’ if they act in a contrarian manner. Therefore, even ’smart’ managers

are incentivised to discard accurate private information (it is unknown to them that the information is accurate)

and follow public sentiment. As in Banerjee’s model, this swamps the information space of the market for

investments, and information that would be contained within an investment’s price is lost.

It is worth noting that a distinction needs to be made regarding the ’intentional’ herding described by

these models, and ’spurious herding’ as termed by Bikhchandani & Sharma (2000). Spurious herding is where

investors, who face a similar decision-set, take similar actions independently. For instance, investors reacting to

the economic effect of COVID-19 in similar ways may empirically be observed as herding. However, investors

are not attempting to mimic others’ decisions at all; they are purely processing this information similarly.

Crucially in an empirical setting, this spurious herding results in a necessarily efficient outcome, and thus it is

important to form a solidified hypothesis regarding the herding mechanism, rather than searching for signs of

herding within a market indiscriminately.

AZ’s hypothesis regarding the effect of multidimensional uncertainty is particularly relevant when con-

sidering the implications of government responses to COVID-19 and herding. The pandemic presents both

significant geopolitical and economic risks (Sharif et al., 2020), indicating an environment herding may be

prevalent within. As Kizys et al. (2021) theorise, containment and closure policy responses signal to investors

that the pandemic crisis is under control, providing timely and quality information to investors. These signals

reduce said multidimensional uncertainty, which under AZ’s rational model acts in mitigation of herding.

Irrational Models: In contrast to these rational explanations for herding, Prechter (2010) utilises psycholog-

ical models of the brain to create an irrational model of herding based on impulsive mental activity. Pretcher

uses the “Triune Brain” model, created by psychologist Paul MacLean, which splits the brain into three basic

parts: the brain stem, the limbic system and the neocortex. Within MacLean’s model, the limbic system is

viewed as responsible for the more “primitive” responses, such as the fight-or-flight impulse (Macklin, 1978).

Specifically within the limbic system, Pretcher claims the basal ganglia is responsible for a deep-rooted impulse

to herd - impelling desires to be part of a group and to seek acceptance. These processes, MacLean’s model

claims, overwhelm higher brain functions within the neocortex, which are responsible for rational thought, in

emotionally charged situations. Mimicking others is viewed as a deeply ingrained process: a survival mech-

anism to diffuse attacks. Pretcher likens herding in financial markets to observations of a long-hidden stone

age tribe copying a researcher’s movements (Rubinstein & Gajdusek, 1970). As such, Pretcher suggests this
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immutable “primitive” process is the primary mover of financial market prices, with herding behaviour as a

substitute for rigorous reasoning when knowledge is lacking. Pretcher points to Olsen (1996) as evidence of

this theory, who studies 4000 corporate earnings estimates by company analysts. The study finds a link between

the difficulty in forecasting earnings-per-share, which is interpreted as a source of stress (an emotional charge),

the greater the herding within estimates. This stress leads to a negative feedback loop: market participants

herd out of stress of failure, which results in incorrect decision-making, which induces additional stress. It is

important to highlight that whilst both Pretcher’s irrational model and Banerjee’s rational model are driven by

informational uncertainty, irrational herding is not a Bayesian logic-adhering decision that is optimal for the

decision-maker - rather it is a sub-optimal decision even within the context of informational uncertainty.

MacLean’s Tribiune Brain model which forms the basis of Pretcher theory, however, is severely criticised

within modern neurological research. Cesario et al. (2020) argue that the idea of primitive, impulsive brain

systems being underneath more complex, newer systems is entirely a misconception - with empirical research

evidencing that areas of the brain are not added over time radially, but most often are transformed from existing

parts. Likewise, “impulsive” decisions such as herding are not immutable, but rather highly moderated by

context (Kidd et al., 2013; Gawronski & Cesario, 2013). In other words, it is much more likely that impulsive

herding is an interplay between an automatic, irrational process and a rational one. Whilst Pretcher’s underlying

neurological model is highly questionable, modern psychological research still gives credence to the idea of

automatic imitation, or impulsive herding. As Cecilia Heyes’ paper on the topic states; “. . . although automatic

imitation is subject to input modulation by attentional processes, and output modulation by inhibitory processes,

it is mediated by learned, long-term sensorimotor associations that cannot be altered directly by intentional

processes” (Heyes, 2011).

Dubey et al. (2020)’s research on the mental health implications of the COVID-19 pandemic provides

insight into how Pretcher’s model applies to this paper’s empirical design. Dubey details the psycho-social

burden of quarantine and isolation enforced by government responses to the pandemic. Specifically, the loss of

control stemming from quarantines has been found to generate severe feelings of distress and anxiety, which

can be magnified by separation from family (Brooks et al., 2020). These adverse mental health outcomes have

been reported to be positively associated with quarantine duration (Hawryluck et al., 2004), and specifically

linked to policy stringency (Aknin et al., 2022). In contrast to rational based models of herding, we would

expect a positive relationship between herding behaviour and ‘lockdown-style’ policy stringency. The stricter
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the lockdown policy, and the longer these policies last, the greater stress financial market participants will be

subject to, and the greater the likelihood the negative feedback loop detailed by Pretcher will come into effect.

2.2 Empirical Literature Review

In the 30 years following the seminal article Scharfstein & Stein (1990), 329 articles have been published on

the topic of herding in financial markets with 15,900 citations (Choijil et al., 2022). Since the Great Financial

Crisis, there has been a significant surge in the number of papers published on the topic, with the majority of

them appearing in the last seven years. In fact, the number of articles published and the corresponding citations

during this period have surpassed those of the previous 24 years. This large body of empirical literature covers

numerous models of herding, markets, events and herding consequences.

Measures of Herding: During his herding in financial markets literature review, Spyrou (2013) splits empir-

ical approaches to measuring herding into two categories - approaches that rely on micro-data or proprietary

data, and approaches that rely on aggregate pricing or market data.

The latter approach was pioneered by Christie & Huang (1995) (herein referred to as CH), who based

their methodology on the observation that if herding is present within a market, the dispersion of returns from

the average market return is expected to decrease. This is due to the fact that investors who follow each other’s

investment choices will drive individual assets returns towards the mean. CH defines dispersions as the cross-

sectional standard deviation of returns:

CSSD =

√
∑

n
i=1 (ri − r̄)2

n−1
,

where ri is the individual stock return of stock i and r̄ is the cross-sectional average of the n returns within

the market portfolio. CH as such suggests that during periods of ‘market stress’, defined as abnormally high or

low aggregate market returns, we expect investors are more likely to herd, and thus dispersions will decrease

in herding during these periods. They define a regression specification to capture this relationship,

CSSDt = α +β1DL
t +β2DU

t + εt ,

where DL
t and DU

t are binary indicators capturing when market returns fall within the lower and upper tails
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of the distribution, respectively. Within CH’s regressions, they set these tails both at the 5% and 1% criteria

arbitrarily. Crucially to the explanatory power of this method, this prediction is in complete contradiction to

that of rational asset-pricing models. These models dictate that dispersions will increase as market returns

reach the tails of the distribution, as individual assets vary in degrees of sensitivity to overall market returns.

As such, significant negative values of β1 and β2 contradict rational asset-pricing models and indicate herding

is present within a market. CH carries out an analysis of herding within ordinary common shares traded in US

equity markets, breaking these shares into industry groups to determine the presence of industry-based herding.

CH estimates a significantly positive β1 and β2 for all industries and overall, indicating herding is not present

within the market. This result is consistent when using both daily and monthly data, failing to confirm CH’s

hypothesis that the use of daily data may restrict the type of herding that can be observed2.

Building upon this approach, Chang et al. (2000) (herein CCK) asserts that CH’s methodology is too

restrictive, consequently constructing their own methodology. CCK argued that not only do rational asset-

pricing models predict that the relationship between dispersion and returns are positive, but necessarily linear.

CCK demonstrates this by constructing the expected cross-sectional deviation of stock returns (ECSADt),

based on the difference between asset returns and conditional CAPM predictions, showing that the dispersion

measure’s second-order derivative in expected market returns, Et(Rm,t), is equal to 0:

ECSADt =
1
N

N

∑
i=1

|βi −βm|Et(Rm − γ0),

where βi is the systematic risk measure of security i within the market portfolio, m, of size N, γ0 is the

return of the zero-beta (risk-free) portfolio and Et is the expectation operator at time t. Whilst this relationship

holds in theory, given the presence of expectation-based variables such as Et(Rm,t), we cannot observe nor

measure this mechanism in reality, as such. To combat this issue, CCK constructs the measure cross-sectional

absolute dispersion,

CSADt =
1
N

N

∑
i=1

|Ri,t −Rm,t |,

which proxies for the unobservable Et(Rm,t), as the measure of dispersion the paper utilises empirically.

This established positive and linear relationship between Et(Rm,t) and ECSADt is exploited to construct speci-

2Richards (1999) suggests that the highest-frequency data available should always be used when studying idiosyncratic variance.
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fications that capture a continuous measure of herding, rather than relying on arbitrary binary indicators as per

CH:

CSADt = α + γ
UP
1 |RUP

m,t |+ γ
UP
2 (RUP

m,t )
2 + εt , CSADt = α + γ

DOWN
1 |RDOWN

m,t |+ γ
DOWN
2 (RDOWN

m,t )2 + εt ,

where |RUP
m,t | and |RDOWN

m,t | are the absolute value of the equally-weighted market portfolio in period t when

the market is up and down, respectively. This split of up and down markets allows for asymmetric herding in

market conditions to be captured. The inclusion of a squared returns term, crucially, allows observation of

a non-linear relationship between dispersion and market returns - as captured in a negative and statistically

significant γ2. Importantly, CH’s specification requires a significantly greater magnitude of non-linearity in

return dispersion than is suggested by conditional CAPM, and that is captured within CCK’s specification.

CCK employs both of these specifications and a dummy-distribution approach akin to CH for US, Hong-Kong,

Japanese, South Korean and Taiwanese equity markets for sample periods varying from 1963 to 1997. The

dummy regression results corroborate CH’s findings for the US, and all models fail to find results consistent

with herding for the US, Hong Kong and Japan. CCK suggests that the insignificant γ2 in these samples

confirms the validity of the linear dispersion-returns relationship. However, the two developing markets within

the sample, South Korea and Taiwan, generate significantly negative γUP
2 and γDOWN

2 , suggesting a breakdown

of this linear relationship and indicating herding is present in these markets. Specifically, CCK observes a γ2

ranging between −4.03 and −5.63 for these two countries. CCK suggests this relationship stems from the

increased role macroeconomic information has in these economies, given their size. Interestingly, the adjusted

R2 for these two samples are, on average, significantly higher than those for developed markets. This suggests

that unsystematic risk has a greater impact on the variation in dispersion within the model than systematic risk,

which supports the validity of the herding relationship that CH and CCK base their methodology on.

The approach put forth by these papers is not free from criticism, however. Hirshleifer & Teoh (2003)

comment that CH’s assertion that herding will be more likely to materialise during periods of ‘market stress’

is not an obvious one - a fair observation given CH’s admittedly arbitrary threshold for what constitutes such

stress. Furthermore, Richards (1999) criticises dispersion measures, such as CSSD, as a measure of idiosyn-

cratic variance for their susceptibility to omitted variable bias. Likewise, Richards also comments that equally

weighted measures such as CH’s r̄ will yield dispersions that are dominated by high-variance smaller stocks -

9



potentially failing to capture herding contributed by larger, more economically significant stocks. Studies such

as Chiang et al. (2010) that calculate both equally-weighted and value-weighted market portfolios, however,

report very similar results in practice. Chiang et al. (2010) do contend that the use of OLS within these papers is

likely inefficient, given that the error distribution does not conform to Gaussian requirements - the presence of

extreme outliers can significantly affect the tails of the distribution and produce bias variance estimators. Even

after correcting for such a bias, OLS is inefficient. As such, Chiang suggests utilising a quantile regression,

which produces estimates of the γth conditional-quantile by minimizing weighted deviations from the condi-

tional quantile function. This not only produces a more efficient estimator in the presence of autocorrelative

errors, but also allows observation of the herding relationship at different points within the returns dispersion

distribution.

There are two papers that pioneered the use of an alternative measure of herding, utilising investor-level

micro-data: Lakonishok et al. (1992) and Sias (2004). Lakonishok (herein LSV) proposed that herding could

be detected in a market if there is a degree of correlation across investors in buying and selling a given stock, or

in other words ending up on the same side of the market. The paper assessed end-of-quarter holdings for 769

U.S. all equity tax-exempt funds, primarily pension funds, run by 341 institutional money managers between

1985 and 1989. For each stock i held within a given quarter t, LSV calculates the measure of herding H(i),

H(i) = | B(i)
B(i)+S(i)

− p(t)|−AF(i),

where B(i) is the number of money managers who increase their holdings in the stock in a quarter (net

buyers), S(i) is the net sellers, p(t) is the expected proportion of money managers buying in that quarter

relative to the number active ( 1
N ∑

N
i=1

B(i)
B(i)+S(i)), and AF(i) is an adjustment factor - the expected value of

the first equation term under the null hypothesis of no herding. The construction of this measure aims to

capture the magnitude of the difference in the ratio of buyers to active money managers (the first term) and the

aggregate, or expected, ratio across the whole market in a given period as defined by p(t). This is adjusted

with AF(i) = E[(| B(i)
S(i)+B(i) − p(t)|)|H0], declining in the number of money managers active in a given stock.

This measure is computed for each i and averaged across sub groups. If herding is present within a sub group,

we would expect a significantly different number of investors to end up on the same side of the market, i.e.

a significantly positive value of H(i). Crucially, LSV claims that the sample of money managers does not

constitute a random sample, an as such we may expect these investors who compete for the same customers
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to follow others’ signals. LSV finds an average of H(i) = 0.027, implying that if p(t) = 0.5 then 52.7% of

investors would end up on the same side of the market of an average stock. This is a notably small effect,

unsurprising given 95% of the sample’s trading volume was concentrated in the largest stocks where herding

rarely occurred.

LSV has some significant drawbacks in comparison to CCK and CH’s measures, however. As observed by

Bikhchandani & Sharma (2000), the nature of the sample means that too few stocks are actually changing hands

within each quarter, which contributes to the low herding magnitude. additionally, volume is not considered

within the model at all. More significantly, the lengthy time periods mean that intertemporal herding, any

herding occurring within a time frame smaller than a quarter, cannot be captured.

Herding within Markets: CH and CCK’s methodology emerged as the dominant measure of herding within

the empirical literature given its replicability. The first paper to apply this measure to Chinese equity markets

was Demirer & Kutan (2006) (herein DK). DK hypothesised that the weak rule of law and high levels of

government involvement would result in additional volatility (Su & Fleisher, 1998), and lead investors to rely

more on well-informed “government insiders”. As such, DK suggested herding was likely in Chinese markets.

Employing CH’s methodology and specification with a sample of daily returns from 375 equities listed on the

Shanghai and Shenzhen Stock Exchange from 1999 to 2002, however, DK found no evidence that herding was

present within the market.

These results would be contradicted by Tan et al. (2008), this time utilising CCK’s specification. Chinese

A-share markets are dominated by domestic individual investors, whereas B-shares are primarily for foreign

investors. Tan, suggesting that individual A-share investors lacked significant knowledge of investments, ex-

ploited this differential to determine whether these two groups differed in herding behaviour. Using a sample

period from 1997 to 2003 of daily returns for dual-listed Shanghai A and B and Shenzhen A and B stocks,

Tan found significantly negative R2
m,t coefficients for both A and B share markets. Not only does this contra-

dict DK’s findings, it also fails to confirm CCKs finding that investors in developed markets do not display

herding, given herding is present in B-share markets where international investors dominate. Tan suggests that

developed market participants may exhibit different behavioural tendencies in their own markets compared

to international markets, with international investors relying more on public information in markets outside

of their own. This theory is substantiated by Kim & Wei (2002), which using a variation on LSV’s herding

measure found non-resident investors herd more than resident investors in Korean equity markets. One could
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suggest that the relative inaccessibility and reliability of fundamental information on Chinese equities would

bolster this uncertainty. However, Tan uses a much smaller sample of 87 dual-listed firms compared to DK,

with both samples covering similar time periods. Therefore it is possible that variation in the results of the two

papers stems from differing sample characteristics rather than differing methodologies.

Likewise, Chiang & Zheng (2010) found significant herding within Chinese equity markets between 1988

and 2009, alongside significant herding within almost all of the 18 country sample excluding the U.S. and Latin

America. The study suggested that this exception may be due to Wall Street’s role as the primary disseminator

of trading strategies and information, with markets outside of the Americas following the US’ lead. Interest-

ingly, Chiang and Zheng further this hypothesis by suggesting CCK’s specification is inappropriate for a global

financial system that is likely to be highly integrated with the US. As such, the paper expands CCK’s specifica-

tion by adding US R2
m,t as an argument within the right-hand side of the specification, in effect controlling for

US market conditions. Interestingly for this paper’s purposes, herding in China becomes insignificant follow-

ing this addition, suggesting that CCK’s original specification suffers from omitted-variable bias, overstating

herding effects. The US R2
m,t coefficient is also observed to be significantly negative within the Chinese sample,

as with almost all other non-US markets, suggesting these markets form herding behaviour in-line with the US.

Given the association between herding behaviour and financial instability (Avery & Zemsky, 1998), many

papers have found herd behaviour is present during asset price bubbles (Bekiros et al., 2017) and financial

events such as the 2008 Global Financial Crisis (Chang et al., 2020; Chiang & Zheng, 2010) and more recently

the COVID-19 pandemic (Wu et al., 2020; Yarovaya et al., 2021).

Of particular note to this paper, Kizys et al. (2021) investigate the effect of government responses to

COVID-19 in 72 stock markets from the 1st of January 2020 to the 31 of March 2020, utilising CCKs method-

ology and policy stringency data from the Oxford Covid-19 Government Response Tracker. The paper also

implements the VIX within the regression as a control for global uncertainty, although this does not alter the

results. The paper finds a statistically positive relationship between policy stringency and herding behaviour

globally, associating a 10-point increase in the index with an increase in CSAD of 0.174 percentage points.

Interestingly, policy stringency impacted herding behaviour in the APAC region significantly less than others,

with greater baseline herding.
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3 Empirical Research

3.1 Econometric Theory

Data: We view Chinese A-share markets as the ideal environment to study the effect of government responses

on herd behaviour, as China imposed significantly harsher COVID-19 lockdown policies than the global av-

erage (Hale et al., 2021) and A-share markets are dominated by domestic investors, with foreign investors

accounting for only 7.3% of share ownership (UBS, 2020). Financial data used in this paper was obtained from

TuShare, a China-based community-run API that provides Chinese market data. From this API, we retrieve

the daily closing price of each individual stock comprising the CSI 300 index, the largest market capitalisa-

tion equities from the Shanghai Stock Exchange and Shenzhen Stock Exchange. We use daily data following

Christie & Huang (1995)’s observation that ”herd behavior is a very short-lived phenomenon”, which has been

confirmed within the literature (Tan et al., 2008). We use the CSI 300 composition as of the beginning of our

sample, 3 January 2020, in order to mitigate the effect of survivorship bias occurring from stocks dropping

out of the index. Studying the same mix of equities for the entirety of the sample period maintains the power

of our analysis. Data is collected from 22nd January 2020 to 30th December 2022, which results in 714 days

of observations after eliminating non-trading days. This sample period was chosen to focus on the effects of

variation in severity of ‘lockdown-style’ containment measures rather than the introduction of such measures.

In addition to market data, we collect data within the same period on the Chinese government response to

COVID-19 from the Oxford Covid-19 Government Response Tracker (OxCGRT), as produced by the Blavatnik

School of Government at the University of Oxford (Hale et al., 2021). In particular, we utilise the Stringency

Index within our main specification, which seeks to record the severity of ‘lockdown-style’ policies that pri-

marily restricts people’s behaviour and movement. We also gather COVID-19 daily case data for China from

the Our World in Data COVID-19 database.

Methodology: We adopt the approach proposed by Christie & Huang (1995) (CH), utilising the relationship

between dispersion and market returns as our measure of herding, due to its replicability and ability to capture

herding within short time periods. However, we have chosen to utilise Chang et al. (2000)’s (CCK) alternative

specification, namely that our specification’s measure of dispersion is the cross-sectional absolute deviation

(CSAD), expressed as
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Figure 1: Stringency Index value between the 1st January 2020 and 1st January 2023

CSADt =
1
N

N

∑
i=1

|Ri,t −Rm,t |,

where N is the number of equities within our portfolio (being the CSI 300 as of 03/01/2020) Ri,t is the

observed stock return of equity i at time t and Rm,t is the equally-weighted cross-sectional average of the N

returns within the portfolio. Following CCK, the foundation of our specification is

CSADt = γ0 + γ1|Rm,t |+ γ2R2
m,t + εt ,

where γ denotes the model’s coefficients and εt the error term at time t. This model’s rationale is as

follows: according to rational asset-pricing models, as individual assets have varying degrees of sensitivity

to overall market return, the relationship between dispersions and market returns is linear and increasing.

However, if herding is present within the market CCK suggests that this relationship will no longer hold, as

investors’ conformity will result in a non-linear, decreasing or even a negative relationship between the two

variables. As such, if herding is present we would expect a negative γ2, indicating a non-linear relationship.

Conversely, in the absence of herding we would expect γ1 to be positive and γ2 to be insignificant.

CSAD benefits from its ability to capture non-linear herding effects, in combination with the inclusion
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of R2
m,t , that CSSD is unable to capture, which CCK notes results in CH’s approach being overly strict. It is

notable that, additionally, CSAD provides a better fit for our data compared to CSSD, which has been observed

in prior literature (Gleason et al., 2004). Whilst observers state concerns regarding CSAD’s construction,

notably it’s reliance on proxying for unobservable variables within conditional CAPM (Yao et al., 2014; Tan

et al., 2008), the two measures share a correlation coefficient of ρ = 0.89 within our sample and as such are

expected to produce similar results. Additionally, as highlighted by Yao et al. (2014), the model has high

levels of structural multicollinearity regarding Rm,t and R2
m,t , which will reduce the efficiency of the model’s

standard errors. Therefore it is important we standardize the R2
m,t variable by subtracting its arithmetic mean,

R̄m, removing much of the variable’s multicollinearity. The approach of purely subtracting the mean from our

variable was chosen over creating a Z-statistic to preserve normal interpretation of the estimated coefficient.

Therefore, Model-1 specification is expressed as

CSADt = γ0 + γ1|Rm,t |+ γ2(Rm,t − R̄m)
2 + εt . (1)

Following empirical consensus (Yao et al., 2014; Tan et al., 2008; Chiang et al., 2010) we utilise loga-

rithmic daily returns within our calculations of CSADt and Rm,t such that Ri,t = 100× (lnPi,t − lnPi,t−1), where

Pi,t is the closing price of equity i at time t. This is in order to preserve time-additivity and log-normality, in

addition to aiding the interpretation of our model’s predicted coefficients.

Extension 1 - The Effect of ’lockdown-style’ Policies on Herding: In order to distil China’s containment

policy response over time, we utilise OxCGRT’s ‘Stringency Index’. This index calculates a daily average

of 9 ‘lockdown-style’ policy indicators that the database records: closing of schools and universities, clos-

ing of workplaces, cancelling of public events, limits on gatherings, closing of public transport, shelter-in-

place orders, restrictions on internal city/region movements, restrictions on international travel and presence of

COVID-19 public information campaigns. Importantly to China, policies that only apply to a particular region

rather than nationally are weighted less within the final index. We chose a variation of this Stringency Index

that is split based upon how these policies depend on vaccination status, with weightings applied according to

the vaccination rate of the population:

ST RINGENCYt = [(stringencyv,t ∗Wv,t)+(stringencynv,t ∗Wnv,t ]/100,
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where ST RINGENCYt is our specification’s measure, stringencyv,t is the index score for policies applying

to vaccinated individuals at t, stringencynv,t the index score for non-vaccinated based policies, and Wv,t and

Wnv,t are the percentage of the population vaccinated and not-vaccinated respectively. We chose this to more

accurately reflect how containment policies apply to China’s population at a given time. We have re-scaled the

stringency index from 0 to 1, compared to its original form of 0 to 100, in order to aid the interpretation of our

estimated coefficients.

As highlighted by Aknin et al. (2022), many previous studies utilising ‘lockdown-style’ policy regressors

fail to control for confounding variables such as local infection and mortality rate. Not including these variables

within our regression could result in an understatement within our ST RINGENCYt coefficient given previous

studies have suggested the pandemic results in lower herding behaviour within China (Wu et al., 2020). As

such, our second model takes the following form:

CSADt = γ0 + γ1|Rm,t |+ γ2(Rm,t − R̄m)
2 + γ3ST RINGENCYt +ΓAt + εt , (2)

where A is a matrix of controls with the vector Γ of coefficients. Formally, within our controls we include

a 7 day moving average of the number of deaths, and the daily single-vaccination rate. A moving average has

been chosen for our mortality rate measure in order to smooth measurement errors present in daily data. This

approach has limited power to capture the possible non-linear relationship between containment policies and

mental health in herding. It may be that cognitive stress strong enough to affect herding only occurs during

demonstrably limiting lockdown policies. We have included multiple alterations to Model 2 that seek to capture

this non-linear relationship. Firstly, we have replaced ST RINGENCYt with dummy indicators S j%, taking the

value 1 if the Stringency Index value falls within the upper jth percentile of the index’s distribution. As such,

our Model 2 is expressed as

CSADt = γ0 + γ1|Rm,t |+ γ2(Rm,t − R̄m)
2 + γ3(Rm,t − R̄m)

2 ∗S j%
t +ΓAt + εt . (3)

We run regressions with an S j% for the upper 25th, 10th and 5th percentile. This addition is constructed

as an interaction term to capture the effect severe lockdowns have on the relationship between (Rm,t − R̄m)
2 and

CSADt .

Secondly, following Aknin et al. (2022) we also evaluate the possible cumulative effect of lockdown-style
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policies by including the variable DAY St within Model 3, taking on the number of days the population were

under high-stringency policies:

CSADt = γ0 + γ1|Rm,t |+ γ2(Rm,t − R̄m)
2 + γ3LOCKDOWNt + γ4DAY St +ΓAt + εt , (4)

where LOCKDOWNt is the OxCGRT’s indicator of stay-at-home policies, (which takes the value 0 if there

is no lockdown policy, 1 if it is recommend to not leave the house, 2 if it is a requirement to not leave the house,

with exceptions for daily exercise, grocery shopping, and ’essential’ trips and 3 if it is a requirement to not leave

the house, with minimal exceptions) and DAY St is the cumulative number of days that LOCKDOWNt = 3,

which resets every time the indicator drops below 3. By using this approach, it becomes possible to monitor

the impact of quarantine length-related stress (Brooks et al., 2020) on herding behaviour.

Extension 2 - Time Series Analysis: Our static model is likely subject to issues causing failure of the Gauss-

Markov assumptions necessary to maintain efficiency of OLS as an estimator and validity of standard errors.

In particular, it is likely our error term suffers from serial correlation, as market dispersion measures such as

CSAD and high-frequency market data in general are frequently observed to exhibit high levels of autocorre-

lation (Chang et al., 2000). As such it is necessary we test for correlations between our model’s residuals over

time in order to determine if the true disturbances are auto-correlated. It is also prudent to observe the partial

autocorrelation function (PACF). The PACF partials out residual correlations of intervening lags between time

periods, compared to the autocorrelation function, as such allowing us to observe the level of partial autocor-

relation at each time period. Any significant partial-correlations cause us to reject the null that our underlying

process can be represented by a moving-average process of MA(0), and instead indicate that variation CSADt is

comprised of previous time-period values CSAD. We also investigate the possibility of our model’s estimated

auto-regressive component actually being a unit root process, or a random-walk:

CSSDt = ρCSSDt−1 + ...+ εt ,

with ρ = 1. Such a highly persistent process fails the requirement of stationarity and we will not be able

to utilise the Ergodic Theorem nor the Central Limit Theorem necessary for coefficient estimation. As such

it is prudent to run an Augmented Dickey & Fuller (1976) test, fitting the model above with an intercept and

no drift (after visual inspection of our data). The test is augmented with lags of ∆CSADt in order to control
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for serially-correlated errors within the test’s model. Under the null the parameter for CSADt−1 is equal to 0,

equivalent to ρ = 1 above. The t values used to test this null do not have standard distribution, however p values

can be approximated via Monte Carlo simulations (MacKinnon, 1994) to a sufficient degree of accuracy. As a

complementary assumption to stationarity, we will also need to observe the autocorrelation function (ACF) to

verify that the series can be described as weakly dependent, i.e. Corr(CSADt ,CSADt+h) → 0 with sufficient

speed so that, in combination with stationarity, the Ergodic Theorem holds. We confirm the results of the PACF

and Augmented Dickey-Fuller test by running a Breusch (1978) Godfrey (1978) test. This is necessary as, given

the test utilises the Lagrange Multiplier (LM) statistic, we can conduct a joint test of higher autocorrelation up

to a specified level of lags. The test, derived from constrained optimisation, is equivalent to running an OLS

regression on a ‘restricted’ version of our model, or our model specification excluding any auto-correlated

errors, to obtain predicted residuals ε̂t for all t ∈ [0,N]. ε̂t is then regressed upon the remaining predicted

residuals and independent variables. It is worth noting that this test is beneficial above the Augmented Dickey-

Fuller as the presence of our independent variables within the auxiliary regression means the strict-exogeneity

assumption is no longer needed. The LM statistic is constructed such that LM = (n − p)R2
ε̂
∼ χ2

p, where

n is the number of observations, p is the number of autocorrelations and R2
ε̂

the R-squared of the auxiliary

regression. This statistic, following a Chi-Squared distribution, tests the joint null that the coefficient of each

level of autocorrelation is equal to 0. We also verify our model’s errors are normally distributed, necessary for

efficiency. We do this visually, observing a histogram of our CSAD variable.

In addition to autocorrelation, heteroskedastic errors within our model pose a threat to the efficiency of

OLS as an estimator in addition to the validity of our standard errors. To correct for these factors within our

standard errors and ensure the validity of inference tests, we chose to utilise the Newey & West (1987) estimator

for our regressions in order to compute heteroskedastic and autocorrelative consistent (HAC) errors. The

Newey-West estimator extends the White (1980) formulation, which builds upon the standard OLS variance

estimator and produces heteroskedastic consistent errors by estimating the variance at each value of t within

our sample via ε̂2
t xtx′t . The White estimator can be expressed as Var(β̂ ) = (X ′X)−1X ′Ω̂0X(X ′X)−1, with:

X ′
Ω̂0X =

1
T

T

∑
t=1

ε̂t
2x′txt ,

where X is a t × 1 matrix of the vectors xt containing our independent variables at t, β̂ is a matrix of

the model’s predicted coefficients, ε̂t is the predicted residuals at t and Ω0 is the variance-covariance matrix
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for our residuals under no serial correlation. When introducing the possibility of autocorrelation, the White

formulation is no longer valid as the covariance values within the variance-covariance matrix can no longer

be assumed to be 0. Likewise, we cannot extend this White formulation to be X ′Ω̂X , as given Ω̂ = ε̂ ε̂ ′, this

estimator results in a V̂ar(β̂ ) = 0. The Newey-West estimator proposes a solution to this by applying a Barlett

Kernal weighting of wl = 1− l
L+1 to each autocorrelation within the variance-covariance matrix according to

their level of autocorrelation, L. As such, the Newey-West variance estimator is expressed by

̂Varnw(β̂ ) = (X ′X)−1X ′
Ω̂nwX(X ′X)−1 = X ′

Ω̂0X +
1
T

L

∑
l=1

T

∑
t=l+1

wlεtεt−l(xtx′t−l + xt−lx′t).

Autocorrelations further away from t are weighted less within our estimator, which converge to 0 under

the assumption of weak-dependence, maintaining the efficiency of the estimator by preventing too many es-

timations of coefficients. In order to calculate how many levels of autocorrelations we take into account, i.e.

our truncation parameter L, we observe both the common practice outlined in Greene (2008), dictating that

L ≈ T 1/4, and the results of our PACF.

3.2 Empirical Analysis and Results

Table 3.1: Summary statistics

Sum Mean SD Min Max N

CSAD 1,088 1.524 0.360 0.732 2.923 714
CSSD 91 0.128 0.029 0.059 0.251 714
Market Return -17 -0.024 1.242 -8.977 5.395 714
Market Return Squared 1,100 1.540 4.200 0.000 80.157 714
Stringency Index 511 0.716 0.089 0.264 0.819 714
C6: Shelter in Place Indicator 1,771 2.480 0.891 0.000 3.000 714
Days 23,886 33.454 37.574 0.000 135.000 714
Vaccination Rate 28,221 39.525 42.218 0.000 89.350 714
COVID-19 Deaths 7-Day Rolling Average 27,945 39.139 99.653 0.000 1294.571 714

Table 3.1 shows the summary statistics for the variables within our regressions. CSAD by definition has

a lower bound of zero, indicating all individual returns are moving in perfect unison with the market. From

the table, we can also observe that China had an average Stringency Index value of 71.6, staying significantly

higher than the global average in almost all time periods (Hale et al., 2021). This confirms that China is an

ideal market to analyse the effects of highly restrictive ’lockdown-style’ policies.
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Regarding the statistical tests detailed in Section 3.1, the results from the Bruesch-Godfrey test indicate

that there are significant autocorrelations past 20 lags, meaning we reject the null that the data series can

be described as an AR(p) or MA(p) process for 0 < p ≤ 20. As such it is appropriate for our regression’s

standard errors to be corrected utilising Newey-West HAC errors. Observing the PACF, we determine that

a truncation parameter of 5 lags is appropriate for our estimator, as this maintains relatively high levels of

efficiency whilst accounting for the majority of serial correlation. Likewise, we conclude from the ACF that

our series is characterised as weakly-dependent. We also conclude via visual inspection of CSAD’s distribution

that our model’s error terms are normally distributed. Finally, we calculate Augmented Dickey-Fuller t statistic

of −12.478, which leads us to reject the null at the 1% significance level that our series is described by a

random walk without a drift, and as such we conclude that the series is stationary.

Table 3.2 contains our regression results. Our herding coefficient, (Rm,t − R̄m)
2, is negative and significant

at the 5% level in all panels, indicating that the linear relationship between CSADt and Rm,t does not hold and

herding is present within the CSI 300 for our sample period. We can observe this graphically in Figure 2. This

suggests that the herding relationship within Chinese A-share markets found by Tan et al. (2008); Chiang &

Zheng (2010) holds during the COVID-19 period, which corroborates the findings of Wu et al. (2020).

Panel B reports the effect of containment policy stringency, as measured by the Stringency Index, on herd-

ing behaviour. The statistically significant coefficient indicates that cross-sectional average dispersion, CSAD,

increases with stringency of government response. Specifically, an increase of 10 points within the Stringency

Index (which ranges from 0 to 100 and has a mean of 71.6) results in a 4.2265 percentage point increase in dis-

persion. This indicates that a more strict ‘lockdown-style’ policy response mitigates herding behaviour. We can

also see that the inclusion of the Stringency Index, in addition to pandemic controls, improves the explanatory

power of the model significantly, with the adjusted R2 increasing by 51.5% compared to Panel A.

Next, Panels C-E contain the results of the models containing dummy coefficients capturing the top 25, 10

and 5 percentile strictest containment policy observations, respectively. Interestingly, whilst the top 25th per-

centile indicator follows the results of Panel B, with a statistically positive relationship between ST RINGENCY

and (Rm,t − R̄m)
2, Panel E suggests a differing relationship. The coefficient for S0.05

t × (Rm,t − R̄m)
2 indicates

that a top 5% value of the Stringency Index is associated with a reduction of linearity within the relationship

between market return and return dispersion. This relationship can be observed within Figure 3, and as such

we conclude that the most stringent ’lockdown-style’ government responses actually increase herding, contrary
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Table 3.2: Regression Results

(A) (B) (C) (D) (E) (F)

|Rm,t | 0.18341∗∗∗ 0.18214∗∗∗ 0.16315∗∗∗ 0.18059∗∗∗ 0.19307∗∗∗ 0.18281∗∗∗

(0.02499) (0.02437) (0.02413) (0.02464) (0.02424) (0.02444)

(Rm,t − R̄m)
2 -0.00936∗∗ -0.00998∗∗ -0.01077∗∗∗ -0.00954∗∗ -0.01095∗∗ -0.01009∗∗

(0.00462) (0.00470) (0.00321) (0.00462) (0.00460) (0.00476)

ST RINGENCYt 0.42265∗∗

(0.21290)

S0.25
t × (Rm,t − R̄m)

2 0.01377∗∗∗

(0.00518)

S0.10
t × (Rm,t − R̄m)

2 0.00186
(0.00776)

S0.05
t × (Rm,t − R̄m)

2 -0.10850∗∗∗

(0.03308)

LOCKDOWNt 0.04907∗

(0.02613)

DAY St -0.00055
(0.00065)

Vaccination Rate -0.00149∗∗∗ -0.00139∗∗∗ -0.00144∗∗∗ -0.00155∗∗∗ -0.00129∗∗

(0.00054) (0.00054) (0.00054) (0.00054) (0.00063)

COVID-19 Deaths -0.00035∗∗∗ -0.00044∗∗∗ -0.00045∗∗∗ -0.00046∗∗∗ -0.00036∗∗∗

(0.00013) (0.00012) (0.00012) (0.00012) (0.00012)

Constant 1.37724∗∗∗ 1.14927∗∗∗ 1.45928∗∗∗ 1.45403∗∗∗ 1.45549∗∗∗ 1.34074∗∗∗

(0.02616) (0.15211) (0.03365) (0.03340) (0.03411) (0.06409)

Adjusted R2 0.1277 0.1935 0.1892 0.1833 0.1966 0.1916

Standard errors in parentheses and based on Newey and West (1987)’s heteroscedasticity and autocor-
relation consistent standard errors. This table reports the estimated coefficients and adjusted R2 for
the models defined in Section 3.1. Panel A contains results for the base model defined in Equation 1:
CSADt = γ0 + γ1|Rm,t |+ γ2(Rm,t − R̄m)

2 + εt . Panel B contains results for the lockdown-policy extension model de-
fined in Equation 2: CSADt = γ0+γ1|Rm,t |+γ2(Rm,t − R̄m)

2+γ3ST RINGENCYt +ΓAt +εt . Panels C D & E contain
results for the model defined in equation 3: CSADt = γ0+γ1|Rm,t |+γ2(Rm,t − R̄m)

2+γ3(Rm,t − R̄m)
2 ∗S j%

t +ΓAt +εt
for the top 25th, 10th and 5th percentile respectively. Panel F contains the results for the model defined in Equation
4: CSADt = γ0 + γ1|Rm,t |+ γ2(Rm,t − R̄m)

2 + γ3LOCKDOWNt + γ4DAY St +ΓAt + εt .
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Figure 2: Plot of CSADt against Rm,t for the stocks within the CSI 300 between 22nd January 2020 and 30th
December 2022, with observation colour reflecting Stringency Index value.

Figure 3: Plot of CSADt against Rm,t for the stocks within the CSI 300 between 22nd January 2020 and 30th
December 2022, with observation colour reflecting whether Stringency Index value falls within top 5 percentile.
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Table 3.3: Principle Component Analysis Eigenvectors

Variable PC1 PC2 PC3

Lockdowns 0.4815 0.2910 -0.2273
Workplace closures 0.4905 -0.1111 -0.2472
Public event cancelling 0.3405 -0.3499 0.5167
Restrictions on gatherings 0.3458 -0.2143 0.5347
Public transport closure 0.3087 0.2999 0.1682
Movement restrictions between cities/regions 0.4125 0.3259 -0.2459
International travel restrictions -0.1627 0.7338 0.4956

Bold indicates the largest loading factor within principle component. Table contains load-
ing factors of principle components (PCi) with the requirement of λ ≥ 1.

to less stringent policy responses. Our final panel, Panel F, indicates that the effect of lockdown duration on

herding is insignificant.

These results appear to provide evidence of two antagonistic theories regarding how ‘lockdown-style’

policies affect herding. Firstly, as proposed by Sharif et al. (2020) and explored by Kizys et al. (2021), we find

that stricter policies mitigate herding behaviour, supporting the argument that the addition of quality informa-

tion from decisive government response reduces multidimensional uncertainty, which in turn we interpret as

a decrease in rational herding. This can be likened to increasing the probability that a signal is correct within

Banerjee (1992)’s model of herding. Simultaneously, however, the strictest 5% of lockdown-style policies lead

to a less-than-proportionate mitigation of herding behaviour, which we argue is due to the countervailing effect

of increased investor cognitive stress. Previous studies have found significant links between lockdowns and

adverse mental-health effects (Aknin et al., 2022; Dubey et al., 2020), notably cognitive stress, which Prechter

(2010) proposes leads to irrational herding. We interpret our results as demonstration of investor resilience

to lockdown-induced cognitive stress, with an upper-ceiling of policy stringency where statistically-significant

effects start to materialise.

Robustness Analysis: For our primary robustness check, following the methodology of Kizys et al. (2021),

we utilise principle component analysis (PCA) in order to observe which factors are responsible for the majority

of variation within the Stringency Index, which we can use to verify our interpretation of the relationship be-

tween policy stringency and herding. PCA is primarily a statistical method of dimensionality reduction, which

arranges our random variables, in this case the indicators that compose the Stringency Index 3, into uncorrelated

3The construction and details of each of these indicators can be found within the OxCGRT documentation https://github.

com/OxCGRT/covid-policy-tracker/blob/master/documentation/codebook.md

23

https://github.com/OxCGRT/covid-policy-tracker/blob/master/documentation/codebook.md
https://github.com/OxCGRT/covid-policy-tracker/blob/master/documentation/codebook.md


linear combinations, or PCs. Let X be a vector containing our 7 indicator variables, X ′ = [X1,X2, ...,X7]. We

consider an orthogonal arrangement of uncorrelated linear combinations of these indicator variables PCi such

that the first combination, PC1, has maximal variance compared to the other combinations, (i = 1,2, ...,7):

PC1 = a′1X = a11X1 +a12X2 + ...+a17X7,

PC2 = a′2X = a21X1 +a22X2 + ...+a27X7,

...

PC7 = a′7X = a71X1 +a72X2 + ...+a77X7,

where aii are loading factors representing the contribution of each variable to the PC, which is subject

to the unit-length condition a′1a1 = 1 as a form of normalization. Given this transformation, we calculate the

eigenvalue-eigenvector pairs (λi,e1), such that Var(PCi) = e′iΣei = λi, where Σ is the covariance matrix of X .

In other words, PC1 has the largest λ and as such is responsible for the most variance within the Stringency

Index, with each subsequent PC possessing less variance. Following the Kaiser criterion, we maintain the

top three principle components that have λ ≥ 1, which are responsible for 70% of the variation within the

Index. Table 3.3 contains the loading factors for our eigenvectors. As such, we can determine which indicators

cluster in their variation. PC1 can be thought of as an indicator of disruption to daily life, whereas PC2 is more

responsible for variation in restrictions to freedom of travel.

We then replace ST RINGENCY within our primary regression for Extension 1, defined in Equation 2,

with our three primary components. Our resulting coefficients for the components are:

PC1 : 0.02171∗∗(0.01044), PC2 : −0.01870(0.02315), PC3 : −0.01120(0.01941)

where standard errors are in brackets and ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. PC1 is significantly positive,

indicating that policies disrupting daily life are most responsible for mitigating herding. We hypothesise this is

due to the reduction in multidimensional uncertainty the most visible government policies are responsible for.

Our indicator for freedom of travel policies, PC2, is negative but insignificant, suggesting these policies have

little, if any, effect on herding. The same can be said for PC3. As such, we confirm the results of Panel B within

our main regression, yet we also fail to confirm the result of Panel E.
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Discussion: Whilst the results of this paper are sufficiently robust, there are limitations to the empirical strat-

egy that are worth identifying for future research. Firstly, it can be observed in Figure 2 that the results from

our OLS regressions, especially the estimated coefficients for (Rm,t − R̄m)
2, are likely overstated due to the ex-

istence of outliers, as contended by Chiang et al. (2010). As such, it may be prudent to repeat our methodology

utilising a quantile regression over OLS in order to test our herding relationship conditioning for differing quan-

tiles. Additionally, the non-persistent nature of our herding behaviour found in Panel E, regarding the strictest

5% of policies, suggests this herding relationship may be spurious, with investors facing similar a decision-set

regarding an unobserved event (Bikhchandani & Sharma, 2000). In order to determine this, a study of the

highest Stringency Index observations could be undertaken for a range of markets, akin to Kizys et al. (2021),

to test the cognitive stress hypothesis further. Observing the PACF, we also detect a lone, significant autocor-

relation at lag 20, indicating a structural break. The presence of such a break could be determined by utilising

a Chow test (Chow, 1960). Finally, in reality ’lockdown-style’ policies in China were almost always applied

regionally. Whilst the Stringency Index does discount local policies compared to national, this does not reflect

the proportion of investors under lockdown at a given time. Future research could be conducted focusing on

Shanghai lockdown periods, a centre for financial market participants in China, as an event study.

4 Conclusion

This paper studies the effect of ’lockdown-style’ policies, in response to the COVID-19 pandemic, on herding

behaviour in Chinese equity markets. Utilising methodology proposed by Chang et al. (2000), and imple-

menting a measure of policy response stringency developed by the Oxford COVID-19 Government Response

Tracker, we found that herding was present in A-share markets during the pandemic, and containment poli-

cies mitigated this behaviour by reducing multidimensional uncertainty associated with COVID-19. However,

we also found that the strictest 5% of lockdown policies increased herding behaviour, potentially due to the

additional cognitive stress these policies cause to market participants. The majority of the reduction in cross-

sectional average deviation (CSAD) of market returns, our herding measure, was a result of the most visible

policies that disrupted daily life.
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5.1 Econometric Specification Codebook
This codebooks’s purpose is to create a timeseries dataset of the primary regression specification used within
this Economics dissertation. All of the data files and notebooks can be found at this dissertation’s GitHub page:
https://github.com/SLBlundell/Economics-Dissertation/.

The following code creates the methods necessary to construct the regression specification. Namely, it
calculates the regression specification’s variables. These variables are placed within a time series dataset, with
each row representing the specification for a given value of t.

import pandas as pd

import numpy as np

from typing import List, Dict

class DataProcessor:

"""

Represents the processing of given data into the primary regression specification

"""

def __init__(self, returns_file: pd.DataFrame, stringency_file: pd.DataFrame,

covid_file: pd.DataFrame) -> None:

self.df: pd.DataFrame = returns_file

self.df_stringency: pd.DataFrame = stringency_file

self.df_covid: pd.DataFrame = covid_file

"""

Parameters

----------

returns_file : DataFrame

DataFrame containing market data for selected equities received from the

TuShare API

stringency_file : DataFrame

DataFrame containing dates and corresponding stringency index for China

"""

def sort_data(self) -> None:

"""Sorts data based on equity code, then ascending date"""

self.df = self.df.sort_values(by=['ts_code', 'trade_date']).reset_index(drop=True)

def calculate_log_returns(self) -> None:

"""Calculates daily logarithmic returns for all dates"""

close = pd.to_numeric(self.df['close'], errors='coerce').astype('float')

self.df['daily_log_return'] = 100 * (np.log(close) - np.log(close.shift(1)))

self.df.loc[self.df['trade_date'] == '2020-01-02', 'daily_log_return'] = np.nan

def calculate_return_market(self, date: int) -> float:

"""Calculates the market return, being the equally-weighted arithmetic mean of

individual equity log-returns on a given date"""

return np.mean(self.get_returns_on_date(date))
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def calculate_CSAD(self, date: int, R_m: float) -> float:

"""Calculates CSAD on a given date"""

returns_on_date = self.get_returns_on_date(date)

return (1/self.df['ts_code'].nunique()) * np.sum(np.abs([x - R_m

for x in returns_on_date]))

def calculate_CSSD(self, date: int, R_m: float) -> float:

"""Calculates CSSD on a given date"""

returns_on_date = self.get_returns_on_date(date)

return (1/(self.df['ts_code'].nunique() - 1)) * np.sum([(x - R_m) ** 2

for x in returns_on_date]) ** (1/2)

def get_returns_on_date(self, date: int) -> List[float]:

"""Returns list of all logarithmic equity returns on a given date"""

return self.df.loc[self.df['trade_date'] == date, 'daily_log_return'].tolist()

def process_data(self):

"""Iterates through all unique dates within datasets, creating a row of all

variables within the regression specification,

and appending the main specification dataset with said rows"""

self.calculate_log_returns()

stringency_dict = self.df_stringency.set_index('Date').to_dict()

cols_to_extract = ['StringencyIndex_WeightedAverage',

'C6E_Stay at home requirements',

'PopulationVaccinated',

'C2E_Workplace closing',

'C3E_Cancel public events',

'C4E_Restrictions on gatherings',

'C5E_Close public transport',

'C7E_Restrictions on internal movement',

'C8E_International travel controls']

stringency_dict = {col_name: stringency_dict.get(col_name, {})

for col_name in cols_to_extract}

rows = []

for date in self.df.trade_date.unique():

R_m = self.calculate_return_market(date)

CSAD = self.calculate_CSAD(date, R_m)

CSSD = self.calculate_CSSD(date, R_m)

stringency = {col_name: stringency_dict[col_name].get(date, np.nan)

for col_name in cols_to_extract}

covid = self.df_covid.loc[self.df_covid['date'] == date, 'rolling_deaths']

if not covid.empty:

covid = covid.iloc[0]

else:

covid = 0
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new_row = {'date': date, 'R_m': R_m, 'CSAD': CSAD, 'CSSD': CSSD,

**stringency, 'covid_deaths': covid}

rows.append(new_row)

self.df_spec = pd.DataFrame(rows)

def save_data(self, output_file):

"""Saves the dataset of timeseries data to a comma-deliminated file (csv)"""

self.df_spec.to_csv(output_file)

Here we gather our Chinese equity market data, utilizing the China-based community run API TuShare
https://tushare.pro/.

The daily log return column of the resultant dataset represents logarithmic returns within our vari-
ables, with t being the trade date and i the ts code.

BE WARNED: Due to the community nature of the TuShare API, only 6000 values can be requested at
once for most users. As such, the method below splits the data requests into 20-day batches, which results in a
considerably long runtime for the whole 3-year period.

Note: config.api key must be replaced with your own API key, which can be obtained from TuShare
by signing up to the platform using the link provided above.

import tushare as ts

import re

import config

class GetChineseEquityData:

"""Represents code necessary to retrieve data from TuShare API"""

def __init__(self, list_path, start_date, end_date):

"""

Parameters

----------

list_path : Literal

The list of equities you are retrieving data for. Data should be csv file,

containing the column name "code" with all your equity codes and "exchange"

containing the equity's exchange.

start_date : int

The start date of the period you want to retrieve data for

end_date : int

The end date of the period you want to retrieve data for

"""

self.list_path = list_path

self.start_date = start_date

self.end_date = end_date

self.df_codes = pd.read_csv(list_path)

ts.set_token(config.api_key)

self.pro = ts.pro_api()

def get_codes(self):
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"""Returns a string of codes separated by commas."""

return ','.join([

f"{row['code'][0:6]}.SH" if row['exchange'] == 'Shanghai'

else f"{row['code'][0:6]}.SZ"

for _, row in self.df_codes.iterrows()

])

def get_returns_data(self):

"""Retrieves market data for all equities in the list within the specified

date range using batch queries."""

codes = self.get_codes()

t = self.start_date

appended_data = []

while t < self.end_date:

data = self.pro.daily(ts_code=codes, start_date=str(t), end_date=str(t + 20))

appended_data.append(data)

t += 21

appended_data = pd.concat(appended_data)

return appended_data

Defining the list of equities and timeframe:

csi_list_path = r'data/csi_constituents.csv'

data_components = GetChineseEquityData(csi_list_path, 20200101, 20230101)

returns_data = data_components.get_returns_data()

Getting the COVID-19 Government Response data from the Oxford COVID Policy Tracker’s GitHub
https://github.com/OxCGRT/covid-policy-tracker:

import requests

import io

import pandas as pd

import numpy as np

class GetStringencyData:

def __init__(self, years):

"""

Parameters

----------

years : List

List of years you want data retrieved for, in string format

"""

self.url_base = "https://raw.githubusercontent.com/OxCGRT/covid-policy-tracker" +

"/master/data/OxCGRT_nat_differentiated_withnotes_{}.csv"

self.years = years
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self.stringency_data = pd.DataFrame(columns=['Date',

'StringencyIndex_WeightedAverage'])

def get_data(self, year):

"""requests HTML content from the OxCGRT GitHub, returns content in a DataFrame"""

url = self.url_base.format(year)

data = requests.get(url).content

df = pd.read_csv(io.StringIO(data.decode('utf-8')))

return df

def filter_data(self, df):

"""Filters data so that only dates relevant variables for China is included"""

df = df.loc[df['CountryName'] == 'China']

df = df[['Date', 'StringencyIndex_WeightedAverage', 'C6E_Stay at home requirements',

'PopulationVaccinated']].replace(np.nan, 0)

return df

def concatenate_data(self, df):

"""Combines data for each year specified into one DataFrame"""

self.stringency_data = pd.concat([self.stringency_data, df]).reset_index(drop=True)

def get_and_filter(self):

"""Iterates over each year specified, retrieving and filtering data from OxCGRT"""

for year in self.years:

df = self.get_data(year)

df = self.filter_data(df)

self.concatenate_data(df)

return self.stringency_data

sd = GetStringencyData(["2020", "2021", "2022", "2023"])

stringency_data = sd.get_and_filter()

Requesting and filtering world COVID-19 data provided via https://github.com/owid/covid-19-data.

import requests

import io

import pandas as pd

import numpy as np

class GetCovidData:

def __init__(self):

"""

Parameters

----------

years : List

List of years you want data retrieved for, in string format

"""
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self.url_base =

f"https://raw.githubusercontent.com/owid/covid-19-data/

master/public/data/cases_deaths/{}.csv"

def get_data(self, url):

"""requests HTML content from the Our World in Data GitHub,

returns content in a DataFrame"""

data = requests.get(url).content

df = pd.read_csv(io.StringIO(data.decode('utf-8')))

df = df[['date', 'China']]

return df

def get_and_calculate(self):

"""Gets and calculates 7 day rolling average of deaths"""

df_deaths = self.get_data(self.url_base.format("new_deaths"))

df_deaths['rolling_deaths'] = df_deaths['China'].rolling(7).mean()

df_deaths = df_deaths[['date', 'rolling_deaths']]

"""Gets cases"""

df_cases = self.get_data(self.url_base.format("new_cases"))

df_cases = df_cases.rename(columns={'China': 'cases'})

df_cases = df_cases[['cases']].replace(np.nan, 0)

df = pd.concat([df_deaths, df_cases], axis=1)

return df

cd = GetCovidData()

covid_data = cd.get_and_calculate()

Finally, we can run our data processor, which returns a dataset of rows representing our primary specifi-
cation at each value of t.

data_processor = DataProcessor(returns_data, stringency_data, covid_data)

data_processor.sort_data()

data_processor.process_data()

data_processor.save_data('data/spec_1_stringency_CSSD_CSAD_expanded.csv')

35



5.2 Stata Do-File
clear all

capture log close

log using "section_3-2.log", replace

import delimited "./data/spec_1.csv"

// Data Cleaning //

replace stringencyindex_weightedaverage = 0 if missing(stringencyindex_weightedaverage)

sort date

drop if stringencyindex_weightedaverage==0

gen time=_n

// Generating Regression Variables //

egen r_m_mean = mean(r_m)

gen r_m_sqr= (r_m-r_m_mean)^2

gen r_m_abs=abs(r_m)

replace stringencyindex_weightedaverage=stringencyindex_weightedaverage/100

tempvar PL75

egen `PL75' = pctile(stringencyindex_weightedaverage), p(75)

gen D25Upper = 0

label var D25Upper "S upper 25

replace D25Upper = 1 if stringencyindex_weightedaverage >= `PL75'

tempvar PL90

egen `PL90' = pctile(stringencyindex_weightedaverage), p(90)

gen D10Upper = 0

label var D10Upper "S upper 10

replace D10Upper = 1 if stringencyindex_weightedaverage >= `PL90'

tempvar PL95

egen `PL95' = pctile(stringencyindex_weightedaverage), p(95)

gen D5Upper = 0

label var D5Upper "S upper 5

replace D5Upper = 1 if stringencyindex_weightedaverage >= `PL95'

gen days = 0

label var days "Days"

replace days = days[_n-1] + 1 if c6e_stayathomerequirements == 3

replace days = 0 if c6e_stayathomerequirements < 3
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// Labelling Variables //

la var r_m "Market Return"

la var stringencyindex_weightedaverage "Stringency Index"

la var c6e_stayathomerequirements "C6: Shelter in Place Indicator"

la var populationvaccinated "Vaccination Rate"

la var rolling_deaths "COVID-19 Deaths 7-Day Rolling Average"

la var cases "COVID-19 Daily Cases"

la var r_m_sqr "Market Return Squared"

la var r_m_abs "Absolute Market Return"

tsset time

outsheet csad cssd r_m r_m_abs r_m_sqr stringencyindex_weightedaverage

c6e_stayathomerequirements D25Upper D10Upper D5Upper days populationvaccinated

rolling_deaths cases using ./data/spec_1_stata.csv , comma replace

// Summary Stats //

estpost tabstat csad cssd r_m r_m_sqr stringencyindex_weightedaverage

c6e_stayathomerequirements days populationvaccinated rolling_deaths,

c(stat) stat(sum mean sd min max n)

esttab using ".\TeX_files\SummaryTable.tex", replace cells("sum(fmt(%6.0fc))

mean(fmt(%6.3fc)) sd(fmt(%6.3fc)) min(fmt(%6.3fc)) max(fmt(%6.3fc)) count")

nonumber nomtitle nonote noobs label booktabs collabels("Sum" "Mean" "SD" "Min" "Max" "N")

// Statistical tests //

pac csad

ac csad

hist csad

quietly reg csad r_m_abs r_m_sqr stringencyindex_weightedaverage populationvaccinated

rolling_deaths

estat bgodfrey, lags(1 2:20)

dfuller csad

swilk csad

// Regressions //

eststo: newey csad r_m_abs r_m_sqr, lag(5)

eststo: newey csad r_m_abs r_m_sqr stringencyindex_weightedaverage populationvaccinated

rolling_deaths, lag(5)

eststo: newey csad r_m_abs r_m_sqr c.r_m_sqr#D25Upper populationvaccinated

rolling_deaths,lag(5)

eststo: newey csad r_m_abs r_m_sqr c.r_m_sqr#D10Upper populationvaccinated

rolling_deaths,lag(5)
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eststo: newey csad r_m_abs r_m_sqr c.r_m_sqr#D5Upper populationvaccinated

rolling_deaths,lag(5)

eststo: newey csad r_m_abs r_m_sqr c6e_stayathomerequirements days populationvaccinated

rolling_deaths,lag(5)

esttab, b(5) se(5) nomtitle label star(* 0.10 ** 0.05 *** 0.01)

esttab using "./TeX_files/Regressions_1.tex", replace b(5) se(5)

nomtitle label star(* 0.10 ** 0.05 *** 0.01) booktabs

title("Regression Results \label{reg1}") addnotes("First line" "Second line")

est clear

// Robustness Checks //

pca c6e_stayathomerequirements c2e_workplaceclosing c3e_cancelpublicevents

c4e_restrictionsongatherings c5e_closepublictransport c7e_restrictionsoninternalmoveme

c8e_internationaltravelcontrols, components(3)

predict pc1 pc2 pc3, score

eststo: newey csad r_m_abs r_m_sqr pc1 pc2 pc3 populationvaccinated rolling_deaths, lag(5)

eststo: newey cssd r_m_abs r_m_sqr, lag(5)

eststo: newey cssd r_m_abs r_m_sqr stringencyindex_weightedaverage populationvaccinated

rolling_deaths, lag(5)

eststo: newey cssd r_m_abs r_m_sqr c.r_m_sqr#D25Upper populationvaccinated

rolling_deaths, lag(5)

eststo: newey cssd r_m_abs r_m_sqr c.r_m_sqr#D10Upper populationvaccinated

rolling_deaths, lag(5)

eststo: newey cssd r_m_abs r_m_sqr c.r_m_sqr#D5Upper populationvaccinated

rolling_deaths, lag(5)

eststo: newey cssd r_m_abs r_m_sqr c6e_stayathomerequirements days populationvaccinated

rolling_deaths, lag(5)

esttab, b(5) se(5) nomtitle label star(* 0.10 ** 0.05 *** 0.01)

esttab using "./TeX_files/Regressions_2.tex", replace b(5) se(5)

nomtitle label star(* 0.10 ** 0.05 *** 0.01) booktabs

title("Robustness Results \label{reg2}") addnotes("First line" "Second line")

est clear

log close
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